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Synopsis 

If the tack of a pressure-sensitive adhesive is closely related to the rolling motion of a ball 
on the material, it is more scientific to express tack in terms of the rolling friction coefficient, 
which depends on the physical properties of the materials, and not on any trivial conditions 
of measurements. It is shown that the rolling friction coefficient of a pressure-sensitive adhesive 
can experimentally be determined from the pulling cylinder method much more easily than 
the rolling ball method and that we can theoretically calculate the rolling friction coefficient 
by making some assumptions, concerning deformation and failure of a pressure-sensitive 
adhesive. 

INTRODUCTION 

Tack is one of the most important properties of a pressure-sensitive ad- 
hesive, and it is measured mainly by two kinds of methods; one is the probe 
tack test and the other the rolling ball tack test. Here, the physical problems 
concerning the latter are discussed. 

It is believed that rolling motion of a ball on a pressure-sensitive adhesive 
reflects tackiness of the adhesive because the motion must be closely related 
to bonding and unbonding processes which occur simultaneously at the 
surface of contact. Therefore, the rolling ball tests have been used in many 
countries for a very long time. 

In the Dow method of measuring the rolling ball tack, balls are rolled 
under a standardized condition on an inclined surface on which a sample 
of a pressure-sensitive adhesive is placed, and the diameter of the largest 
ball which stops within some region is determined. And in case of the PSTC- 
6 method, a ball of a certain diameter rolls down on an inclined path, and 
it goes on a horizontal surface of pressure-sensitive adhesive. Here the tack 
of the adhesive is expressed by rollout distance. 

These ways of expressing tack are useful in some practical cases, but the 
physical meaning of the values is not necessarily clear. For scientific pur- 
poses, we had better develop a method, by which tack of pressure sensitive 
adhesive is expressed with significant physical meanings. Fundamentally, 
the rolling motion of a ball must be described by a set of equations of motion, 
where the rolling friction coefficient is involved. If the rolling motion of a 
ball really reflects tackiness of a pressure-sensitive adhesive, we have to 
take into account the rolling friction coefficient of it. The rolling friction 
coefficient is independent of such factors as the angle of inclination and 
leading distance, but is dependent on the physical properties of the mate- 
rials. Therefore, it would be reasonable to think that tack may be expressed 
in terms of this fundamental quantity in order to treat the problem on 
scientific bases. 
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In previous report,' equations of motion of a rolling ball are solved, and 
methods to evaluate rolling friction coefficient of pressure-sensitive adhe- 
sive from experimental data are shown. It became clear that we have to 
perform a rather elaborate analysis according to some complicated equa- 
tions, because the velocity of a ball changes at every moment and at the 
same time the rolling friction Coefficient varies as a function of velocity. 

Then, in this report, it will be shown that rolling friction coefficients of 
pressure-sensitive adhesives can be determined by the pulling cylinder 
method much more easily than by the rolling ball method. If a force to pull 
a cylinder on a pressure-sensitive adhesive at a constant velocity is mea- 
sured, one can calculate its rolling friction coefficient without any elaborate 
analysis. Measurements can be made under a well-defined condition, and 
no assumption is needed concerning the dependence of the rolling friction 
coefficient on velocity. In addition, it is shown that the rolling friction 
coefficient can theoretically be calculated under some assumptions. 

It would be worthwhile to accumulate data of tackiness of many pressure- 
sensitive adhesives which are expressed in terms of rolling friction coeffi- 
cients in order to promote our understandings on science of adhesion. 

ROLLING MOTION OF A CYLINDER ON A 
PRESSURESENSITIVE ADHESIVE 

A cylinder of radius R, length b, and weight Mg is pulled by a force P 
along an inclined surface with an angle of a ,  upon which a sample of 
pressure sensitive adhesive is placed as schematically shown in Figure 1. 
Equations of motion2 are 

MX = P - F - Mgsin a 

M y = O =  N -  Mgcosa 

IQ = R F -  fN 

x = R'p + const 

where F is the static frictional force, N is the normal force, 'p and I are the 
angle of rotation and moment of inertia, respectively, of a cylinder, and f 
is the rolling friction coefficient of the adhesive. From these equations, we 
get 

(MR + I/R) X = R P  - RMgsin a - f2Mgcos a (5) 

J 

Fig. 1. Rolling cylinder. 
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If a cylinder is pulled at a constant velocity, then f = 0. Therefore, 

P = Mg sin a + (f/R)Mg cos a (6) 

In case where a = 0, 

P = (f/R)Mg (7) 

or 

f = PR/Mg (8) 

It is very easy for us to measure the force required to pull a cylinder on 
a pressure-sensitive adhesive at a constant velocity, and then the value of 
f is calculated without difficulty. There is another advantage that R and 
Mg can easily be varied independently in the case of a cylinder. 

There are no literature values of f  obtained by the rolling cylinder method 
as far as sticky materials are concerned. However, we can find some data, 
which are related to the values of f of the materials. Bull, Martin, and 
Vale3 measured “tack” of a particular pressure-sensitive adhesive by means 
of a rotary drum technique. Tack in their study is directly proportional to 
f ,  and it is shown that f decreases as velocity of rotation increases in some 
range. On the other hand, Watanabe and Amari4 studied on tack of printing 
ink by rolling cylinder method. They expressed their data in terms of tack 
energy density Du instead o f f :  It is reasonable to think that these two 
quantities are somewhat proportional to each other. It is shown that Du 
(or f )  becomes very low when the velocity of the rolling cylinder becomes 
extremely low for the very soft materials. Then, if we plot the values off’ 
against logarithm of velocity for a viscoelastic material over a very wide 
range of velocity, it would be possible to imagine that some curve is obtained, 
which increases from a relatively low value to a certain maximum and then 
decreases as velocity becomes higher. 

THEORETICAL CALCULATIONS OF ROLLING 
FRICTION COEFFICIENTS 

Now, what is the physical meaning of rolling friction coefficient? If stress- 
es generated under a rolling cylinder are not symmetrical, there occurs 
rolling friction. It is quite natural to think that the rolling friction coeffi- 
cient f of a viscoelastic material generally consists of two terms: 

f = f , + f a  (9) 

where f ,  represents rolling friction caused by compressive deformation of 
the substrate material and f a  that caused by adhesion or extensional de- 
formation of the substrate, which are schematically shown in Figure 2. 

Theoretical and experimental studies concerning f ,  have been developed 
by many researchers such as Eldredge and Tabor: Tabor: Flom and 
B ~ e c h e , ~  May, Morris, and Atack? Flom: and Minato and Takemura,lo but 
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Fig. 2. Rolling friction caused by adhesion (fa) and that caused by compressive deformation 
of the substrate (L). 

few authors have studied fa .  In the case of a pressure-sensitive adhesive, f ,  
must be much larger than fc, and therefore, we have only to develop the- 
oretical calculations of f a  here. 

When a cylinder is pulled on a pressure-sensitive adhesive in one direc- 
tion, the adhesive will elongate and pull the cylinder from the backside, 
disturbing its rotation, as shown in Figure 3. If compressive deformation 
of the adhesive is neglected, strain of the adhesive E at 0 is expressed as 

E = (R /h )  (1 - cos 0) (10) 

and rate of strain i is 

where h and u are original thickness of the adhesive layer and velocity of 
the cylinder, respectively. If we adopt a mechanical model, stress u gen- 
erated by elongation of the adhesive can be expressed as a function of 0. 
Then, the moment ma caused by the extended part of the adhesive can be 
calculated as follows: 

dm, = R a bR d0 cos 0 sin 0 

ma = R2b Joe* u(0 )  cos 0 sin 0 d0 

(12) 

(13) 

where O b  is the angle where failure is steadily proceeding. This moment ma 
is set to be equal to f,Mg, according to the definition of the rolling friction 
coefficient. Therefore, a general expression for f ,  is 

Now, results of the calculations for some cases are given. It is shown that 
curves of f a  vs. log u are different if we choose different viscoelastic model 
and different failure criterion. 

Fig. 3. Rolling cylinder 
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d 

w 0 
Fig. 4. A single Voigt element: (T = stress; E = strain; E = modulus of a spring; 7) =: 

viscosity of a dashpot. 

Model I: A Single Voigt Element 

If we assume that mechanical behaviors of the pressure-sensitive adhesive 
can be described by a single Voigt element, as Hatall did in his theory of 
peeling, stress a is given as a function of 8 like this: 

= (ER/h) (1 - cos 8 )  + (qdh) sin 8 (15) 

Figure 4 shows the model. Substituting Eq. (15) into Eq. (14), we get 

86 can be determined if we adopt some failure criterion. 

Failure Criterion (A): u = uc 

In case where a failure criterion is a = a,, which means that failure 
occurs when stress becomes a certain critical value a,, the value of 86 is 
then determined by substituting a, into eq. (15) and solving it numerically 
for 8, and fa is calculated according to eq. (16). Curves of fa vs. log u are 
shown in Figure 5.  fa decreases antisigmoidally as u increases in this case. 

NO. E ................ ................. j 1: 0.1000E+07 dynelcm' 

................ i 2 0 .  1585~+07 
i 3 .  0.2512E+07 

. 9. n h ? i n ~ + n 7  
4 :  0 3981E+O7 . 
- .  .. 

! ! 6: O,lOOOE+O8 

~ 8 :  0.2512EC08 ................. ................. ............... , 9: 0.3981E+08 
! 10. 0.6310E+08 
4 

................ .i ................ ! 7. 0.1585EC08 
u 

.............. ................. ........... 
................ 
................. 1 n ................. ................ 

Mg = 0 600EC05 dyne ................ d, = 0.250EC08 dyne/cm2 ............... 7 ~ 0.100E+08 poise I .o 
0.0 

1o-I 10"' IO-) I O - ~  10-l 10" 

u ( d s e c  1 

Fig. 5. Curves of fa vs. log u for a single Voigt element. Failure criterion is (T = ar Values 
of the parameters used for the calculations are also given in the figure. 
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N ~ ,  theta c 
1: 0.00 radian 
2: 0.01 
3: 0.02 
4 :  0.03 
5 :  0 . 0 4  
6 :  0.05  
7: 0.06 
8 :  0.07 
9 :  0.08 
10: 0 .09  
b = 2.0 cm 
R = 1.0 cm 
h = 0,001 cm 
Mg = 0.600E+05 dyne 

2 
1 0 '  ID" 10" 10" ~d 10' id 10' E = 0.100E+08 dyne/cm 

7 = 0.100E+07 poise 
U ( W s e c  ) 

Fig. 6. Curves o f f ,  vs. log u for a single Voigt element. Failure criterion is e = E ,  

Failure Criterion (B): E = eC or 8 = 8,  

If we adopt this failure criterion, which means that failure occurs when 
strain becomes a certain critical value E , ,  fa can be calculated according to 
eq. (161, assuming Ob is a constant (OJ fa increases as u increases, as shown 
in Figure 6. 

Model II: A Single Maxwell Element 

If we assume that mechanical behaviors of the pressure-sensitive adhesive 
can be described by a single Maxwell element, as Fukuzawa12 did in his 
theory of peeling, the following equations hold: 

From these equations, we get the differential equation 

d u  ER ER 
- + - u = -sin 8 

Ul7 h 

and the solution is 

(19) 

Fig. 7. A single Maxwell element. v = stress; e, = strain of a spring; e2 = strain of a 
dashpot; E = modulus of a spring; TJ = viscosity of a dashpot. 
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9.0 

No. E 
1: O.EOOOE+07 dyne/cm 2 
2: 0.1585E+07 
3: 0.2512E+07 
4: 0.3981Ef07 
5: 0.6310E+07 
6: 0.1000E+08 
7: 0.1585E+08 

R = 1.0 cm 
h = 0.001 cm 
Mg = 0.600E+05 dyne 

2 10.' dc = 0.500E+07 dynelcm 

7 = 0.100E+07 p o i s e  
U ( an/= 1 

Fig. 8. Curves off. vs. log v for a single Maxwell element. Failure criterion is u = ue 

I j !  .__....____. 4 ...................................... ............ .._.....___ f ..____..... i 
........... i ........... ; ............ I ............ I..'O ...... ; ........... ! .._.___..___, , I  I 

Then, the rolling friction coefficient is calculated according to eqs. (20) and 
(14): 

Failure Criterion (A): u = u, 

Equation (20) is numerically solved for O(= 8,) and the value of fa is 
calculated according to eq. (21). Figure 8 shows that f i  decreases very sharply 
as u increases. 

Failure Criterion (B): E = c, or 8 = 8, 

fa increases sigmoidally as u increases in this case, as shown in Figure 9. 
The value of fa is calculated according to eq. (21), assuming 86 is a constant. 

No. theta c 
1: 0,000 radian 
2: 0,013 
3: 0,026 
4: 0,039 
5: 0.052 
6: 0.065 
7: 0,078 
8: 0.091 
9: 0.104 
10: 0.117 
b = 2.0 cm 
R = 1.0 cm 
h = 0 .001  cm 
Mg = 0.600E+05 dyne 
E = 0.100E+08 dyne/cm2 
1 = 0.100E+08 poise 

u ( cm/sec ) 

Fig. 9. Curves of fa vs. log u for a single Maxwell element. Failure criterion is e = e, 
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Model 111: Two Maxwell Elements in Parallel Connection 

Hata13J4 has shown that failure envelopes of viscoelastic materials (ad- 
hesives) can be reproduced if we choose a simple viscoelastic model as shown 
in Figure 10, and assume some failure criteria. His theory can be made use 
of for the calculation of fa. Stresses of the model are expressed by the 
following equation: 

fa is obtained from eqs. (22) and (14): 

Failure Criterion (A): ell = ellc 

In the region where the rate of strain is very high, failure occurs when 
strain of the spring in the weak point (element 1) reaches a critical value 
ellc. ell of the model is expressed as a function of 8; then 

Failure Criterion fB): e12 = elZc 

In the region where the rate of strain is very low, failure occurs when 
strain of the dashpot in the weak point reaches a critical value elZc. 

d 

Fig. 10. Two Maxwell elements in parallel connection: u, uI = stress; c , ~  = strain of a 
spring; erl = strain of a dashpot; E, = modulus of a spring; q, = viscosity of a dashpot. 
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Failure Criterion (C): W = W, 
In the case where adhesion is concerned, interfacial failure occurs when 

stored energy in the springs of the model reaches a critical value W,: 

Some appropriate values are given as the critical values, ello e12” and W,, 
and eqs. (241, (261, and (27) are solved for 8, and values of f ,  are calculated 
according to eq. (23). An example of the above calculations is shown in 
Figure 11. Shapes of the curves are different if different critical values are 
given. It is shown that f ,  vs. log u curves changes drastically as the failure 
mode changes from dashpot failure (or ductile failure) to spring failure (or 
brittle failure), and then to interfacial failure. 

Model I V  Multiple Maxwell Elements in Parallel Connection 

Hata15 generalized his theory of fracture, using the multiple Maxwell 
model, and obtained substantially the same conclusion. The theory off, can 
also be developed for the same model: 

EiR3b 1 EiR 
f,= i = l  z -  Mgh ’ E;R2/u2$+ 1 * [ sin3 8b + 1 3 (cos3 8b - 1) 

10.0 

9 . 0  - 8 . 0  

g 7.0 - 6 . 0  

(( 5.0 * 
4 . 0  

3 . 0  
2 . 0  
I .o 
0 . 0  

I (  

b = 2 . 0  cm 
R = 1.0 cm 
h = 0 .001  cm 
M g  = 0.600E+05 
El = 0.100Et08 

y1 = 0.100E+08 

E 2  = 0.100E+08 r2 = 0.100E+07 

Ellc= 0.300E+01 
E ~ ~ ~ =  0.700E+01 

Wc = 0.700E+08 

2 
dyne 
dynelcm 

p o i s e  

dynelcm 

p o i s e  

2 

3 erglcm 

u ( cm/sec 1 
Fig. 11. Curves of fn vs. long u for two Maxwell elements in parallel connection. Failure 

criteria are: (A) ell = elle (spring failure); (B) e12 = el% (dashpot failure); (C) W = W, (interfacial 
failure). 
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& 

..... El, €,I GiJE1@ ti*, 71 %, f.na 

Fig. 12. Multiple Maxwell elements in parallel connection: u, u, = stress; crl  = strain of 
a spring; L , ~  = strain of a dashpot; E, = modulus of a spring; q, = viscosity of a dashpot. 

Failure Criterion (A): 4kl = (klc 

Failure occurs when strain of the spring of the Kth element reaches a 
critical value Ek&. 

Failure Criterion (B): q2 = elZc 

Failure occurs when strain of the dashpot of the Zth element reaches a 
critical value e12,: 

Failure Criterion (C): W = W, 

Failure occurs when stored energy in the springs of the model reaches a 
critical value W,: 

Relaxation spectra of the model are tentatively assumed as shown in 
Figure 13. Again, some appropriate values are given as E k l o  elzo and W, 

ao i  10.24 

C s e d  
Fig. 13. Tentative relaxation spectra. 
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b =  
R =  
h =  
Nt: = 

Ln, I C  = 

&,, zc= 
wc = 

2.0 cm 
1.0 cm 
0.001 cm 
0.600E+05 
0.200E+01 

0.4OOE+Ol 

0.100E+09 

dyne 

erg/cm3 

u ( cm/sec 1 
Fig. 14. Curves of fa vs. long v for multiple Maxwell elements in parallel connection. Failure 

(dashpot failure); (C) W = W, criteria are: (A) c,,,, = ell,lc (spring failure); (B) E , , ~  = 
(interfacial failure). 

and eqs. (30)-(32) are solved for 8, and f ,  is calculated according to eq. (29). 
Figure 14 shows that similar curves are obtained for this model, too. 

CONCLUSION 

The rolling friction coefficient is a fundamental quantity to describe roll- 
ing motion of a ball or a cylinder on pressure sensitive adhesives, and 
therefore, tack must be expressed in terms of the rolling friction coefficient. 
The rolling friction coefficient is determined from the pulling cylinder ex- 
periments much more easily than the rolling ball experiments. The rolling 
friction coefficients can theoretically be calculated if we make some as- 
sumptions concerning deformation and failure of the adhesive. Curves of 
the rolling friction coefficient vs. the logarithm of velocity are different if 
we choose different mechanical model and failure criteria. It would be 
reasonable to expect that a curve of f vs. log u for a pressure-sensitive 
adhesive generally has a peak or peaks, and that f becomes low when 
velocity becomes extremely high or extremely low. Therefore, we will have 
to choose either model I11 or model IV if we want to interpret variations 
off in very wide range of velocity. 

Anyway, it is recommended that researchers of pressure-sensitive ad- 
hesives accumulate data on tack, which are expressed in terms off, instead 
of some empirical parameters. If we prepare a series of pressure-sensitive 
adhesives having various viscoelastic properties, and obtain systematic data 
on f of them as a function of velocity, we can compare the experimental 
and theoretical curves, and these analyses will help us understand in detail 
the mechanism of tack or adhesion in general. 
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